Disturbed flow-activated p90RSK kinase accelerates atherosclerosis by inhibiting SENP2 function.
نویسندگان
چکیده
Disturbed blood flow (d-flow) causes endothelial cell (EC) dysfunction, leading to atherosclerotic plaque formation. We have previously shown that d-flow increases SUMOylation of p53 and ERK5 through downregulation of sentrin/SUMO-specific protease 2 (SENP2) function; however, it is not known how SENP2 itself is regulated by d-flow. Here, we determined that d-flow activated the serine/threonine kinase p90RSK, which subsequently phosphorylated threonine 368 (T368) of SENP2. T368 phosphorylation promoted nuclear export of SENP2, leading to downregulation of eNOS expression and upregulation of proinflammatory adhesion molecule expression and apoptosis. In an LDLR-deficient murine model of atherosclerosis, EC-specific overexpression of p90RSK increased EC dysfunction and lipid accumulation in the aorta compared with control animals; however, these pathologic changes were not observed in atherosclerotic mice overexpressing dominant negative p90RSK (DN-p90RSK). Moreover, depletion of SENP2 in these mice abolished the protective effect of DN-p90RSK overexpression. We propose that p90RSK-mediated SENP2-T368 phosphorylation is a master switch in d-flow-induced signaling, leading to EC dysfunction and atherosclerosis.
منابع مشابه
A crucial role for p90RSK-mediated reduction of ERK5 transcriptional activity in endothelial dysfunction and atherosclerosis.
BACKGROUND Diabetes mellitus is a major risk factor for cardiovascular mortality by increasing endothelial cell (EC) dysfunction and subsequently accelerating atherosclerosis. Extracellular-signal regulated kinase 5 (ERK5) is activated by steady laminar flow and regulates EC function by increasing endothelial nitric oxide synthase expression and inhibiting EC inflammation. However, the role and...
متن کاملThe subendothelial extracellular matrix modulates JNK activation by flow.
Atherosclerosis begins as local inflammation of artery walls at sites of disturbed flow. JNK (c-Jun NH(2)-terminal kinase) is thought to be among the major regulators of flow-dependent inflammatory gene expression in endothelial cells in atherosclerosis. We now show that JNK activation by both onset of laminar flow and long-term oscillatory flow is matrix-specific, with enhanced activation on f...
متن کاملIntegrative Physiology The Subendothelial Extracellular Matrix Modulates JNK Activation by Flow
Atherosclerosis begins as local inflammation of artery walls at sites of disturbed flow. JNK (c-Jun NH2-terminal kinase) is thought to be among the major regulators of flow-dependent inflammatory gene expression in endothelial cells in atherosclerosis. We now show that JNK activation by both onset of laminar flow and long-term oscillatory flow is matrix-specific, with enhanced activation on fib...
متن کاملp21-Activated Kinase Signaling Regulates Oxidant-Dependent NF- B Activation by Flow
Disturbed blood flow induces inflammatory gene expression in endothelial cells, which promotes atherosclerosis. Flow stimulates the proinflammatory transcription factor nuclear factor (NF)B through integrinand Rac-dependent production of reactive oxygen species (ROS). Previous work demonstrated that NFB activation by flow is matrix-specific, occurring in cells on fibronectin but not collagen. A...
متن کاملNovel mechanisms of endothelial mechanotransduction.
Atherosclerosis is a focal disease that develops preferentially where nonlaminar, disturbed blood flow occurs, such as branches, bifurcations, and curvatures of large arteries. Endothelial cells sense and respond differently to disturbed flow compared with steady laminar flow. Disturbed flow that occurs in so-called atheroprone areas activates proinflammatory and apoptotic signaling, and this r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 125 3 شماره
صفحات -
تاریخ انتشار 2015